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A typical

MDOF system



Equation of motion of the system with no damping and  

no external force is given as

This represents a set of N homogenous ordinary differential  

equations of motion coupled through m and k matrices

It required to solve the equations under initial conditions



Instances a, b, c

Free vibration is initiated  

With arbitrary initial  

Displacements Shown

in curve a

Observed motion of mass m

Observed motion of mass 2m



Under arbitrary displacements of each mass (initial condition)  

We observe that the motion is not simple harmonic and

Frequency of mass can not be defined

Further, deflected shape (Ratio u1/u2) varies with time

On the other hand for SDOF system the motion is always

harmonic when displaced by any arbitrary displacement
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Under these conditions of displacements

i. Both masses reach max disp at same time

ii. Both masses pass through equilibrium position at same time
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General comments on MDOF• F
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Free vibration of an undamped system in one of its natural  

Mode of vibration is given by

Time variation of displacement under simple harmonic motion is  

given as



Natural vibration frequencies and  

modes contd

combined equation is written as

substituting this function in equation of  

motion for the entire structure we get
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Thus either

or the natural modes and frequencies  

must satisfy the algebraic equation



Natural vibration frequencies and  

modes contd
Above equation is rewritten as

This is a set of N homogeneous algebraic  

equations. Non trivial solution is possible for these  

equation if if

This is the so called characteristic / frequency  

equation



The determinant, on expansion , gives a polynomial of order N  

Giving N real and positive roots for natural frequency

Positive roots of above equation are the N natural

frequencies of vibration for n = 1,2,3 …. N

They are also called Eigen values or characteristic values

For each value of we can solve homogenous equation

And obtain vector -- eigen vector which gives shape of  

the vibrating structure when one of the value is fixed as 1
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Shear building

Mass matrix

Stiffness matrix

h

h

I of col = Ic



Subbstituting K and M in following equation

We get following polynomial equation



For each of these values we solve the following equation

We get eigen vectors as



Modal expansion of displacements

U1= q1φ11+q2φ12  

U2= q1φ21+q2φ22



Modal expansion of displacements contd.
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Natural modes corresponding to different natural  

frequencies can be shown to satisfy following  

orthogonality condition wrt mass and stiffness

We shall verify the same with a 2 DOF system and then  

prove it for general case



Verification of orthogonality of modes 1 and 2



Proof of orthogonality of any two distinct modes of natural vibbration

Betty maxwel’s reciprocal theorem

Work done by one set of forces on the deflections  

caused by Other set of forces

is equal to

Work done by other set of Forces on the  

deflection caused by first set of forces

For system under natural vibration only inertia forces are

Acting on the system







Using Betty Maxwell’s reciprocal theorem

Work done by r forces of mode m on deflections of mode n

=Work done by r forces of mode n on deflections of mode m



=

By Betty maxwel’s reciprocal theorem



Modal vectors

A modal displacement shape is considered as a vector with r no  

of components ( one for each DOF)

Thus for modes m and n we have modal (shape) vectors as

For geometric orthogonality in 3D  

space for two vectors (say forces)  

F1x F1y F1z and F2x F2y F2z we prove  

orthogonality by taking the dot  

product of the two vectors

F1x F2x + F1y F2y + F1z F2z =0



Concept of modal analysis of  

MDOF system
General equation of motion of MDOF system ( without damping)  

subjected to any dynamic force is given by

[M] is n x n size mass matrix

[K] is n x n size stiffness matrix

{p(t)} is n x 1 size force matrix

It is extremely difficult to solve these coupled simultaneous  

Differential equations when DOF is a large no.

Better option is to convert these equations into modal equations  

And then solve such simple equations for each mode of natural  

vibration
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In this equation we substitute the modal contribution as

φr= mode shape for r th mode

qr((t)=weightage given for r th mode at time t



Concept of modal analysis of  MDOF 

system contd

use
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where Is the modal mass Or generalized mass

Is the modal stiffness Or generalized stiffness

Is the modal force Or generalized force

For mode n



Eq. of motion for n th mode

Eq. of motion for SDOF

The two equations are similar

the modal equation for n th mode will give solution for qn for n th

mode.

Displacements of other mass points can be determined from mode  

shape

Such transformation can be done for each mode n = 1,2,3 --- n

Thus a set of N coupled differential equation is transformed  

into N uncoupled differential equations in modal coordinates  

qn n = 1,2,3--n



+ ....

+ ....where Y = Y  + Y  + Y 
1 1 2 2 3 3

Equation of motion for MDOF subjected  

to ground motion is given by

3

..

21

.. ..

.. ..

M X+ KX = −M Xg

Using modal split up of general  

displacement X

M Y  + KY = −M Xg

.. ..

 

 M  X+ Xg  + KX = 0

1 2 + Y 3 
.. .. ..

and Y  = Y  + Y 

Modal Equation of motion for ground motion as  

input is given by



f (t)

which we can write as
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Premultiplying both sides by 

..
T

n
= − M U

..
T

nn,eq n
Y = − M X

..

n,eq
M Y n + K

T

n

T
..
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n n n n n n

T
.. ..

T T

n n n
 = − M X

T
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 MY  +  KY  = −

 M Y  +  KY
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= Equivalent Stiffness

= Equivalent Mass

no of masses

r=1
r rnM T

n
 M =

T

n
=  K

eq

T

n
=  M

eq

K n

Mn

and

where

n

n
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Modal Response is Given by

Dn = Modal Static deflection X DLF



Displacement Response at any mass point r in original  

structure is given by

n

r  r n u g  x  r n D L F n
M  

D r n  =

. .

  M r  2 r n   2


Mr2rn
u

Mrrn ..
g xrnDLFnDr

**n =D n x  2 =
r n

Pseudo acceleration Response at any mass point r  

in original structure is given by



Pseudo Inertia force at any mass point r  

in original structure is given by

Mr2rn
u

Mrrn ..
g xrnDLFn

n **n
Fr =Dr x Mr

= M
r



Seismic force as per IS 1893-2016

As per IS code

As per theory
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• SDOF • MDOF

DLF − − − function of

T and f(t)

= Y * DLF

Fo
Ystatic = 

K

Y Staticdynamic

DLF n − − − function of

Tn and f(t)

n 2
eq

Feq
(n)

Feq
(n)

(n)

=

==

eqK n
Ystatic

Staticdynamic
(n) = Y (n) * DLF (n)

M

Y





Seismic analysis of MDOF system RHA

We now consider a tower and a typical building frame  

subjected to ground motion

At any instant displacement is given as



Seismic analysis of MDOF system RHA contd

Equation of equilibrium in dynamic state is given as

fi + fs = 0

5 storey plane frame



Structure property matrix and free vibration characteristics



Structure property matrix and free vibration characteristics contd.



Equivalent SDOF systems



Response history analysis for El centro N-S ground motion



Total response history representation for top floor displacement



Response history analysis presents structural response as a  

function of time but structural design is usually based peak values  

of forces and displacements over the duration of earthquake

Peak response of SDOF system can be accurately determined by  

using response spectrum for a given ground motion as the  

response spectrum is drawn using a SDOF system only

For MDOF system, there are some additional concepts which

need to be used to get total (maximum) response of the structure



Timing of peak response in RHA

Modal and total

response



Modal combination of response

In response spectrum, only peaks are collected from  

different modes

For different modes, peaks are reached at different times ,

during the earthquake

Even the combined response reaches maximum at yet  

another time



Modal combination of response contd.

In response spectrum, only peaks are collected from  

different modes

For different modes, peaks are reached at different times ,

during the earthquake

Even the combined response reaches maximum at yet  

another time



All peaks occurring at same time with same sign is an  

upper bound on the solution

Thus actual response is always less than this upperbound

Modal combination of response contd.
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Modal combination of response contd.



Modal combination of response contd.

Complete quadratic combination (CQC) rule is a modal

combination rule applicable to a more wider variety of problems

=Peak response at any mass point

=Peak response at that mass point in mode i

=Peak response at that mass point in mode n



=  Corelation coeff between  

mode i and mode n

= modal damping, generally 5 %

= frequency ratio

IS 1893-2015 gives same equations

where
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Modal displacements and modal (equivalent) static  

forces





RSA and RHA values of peak response



End of presentation
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Consider the 2DOF system  

subjected to harmonic force  

as shown

Equations of motion of the

system are

Above equations are coupled through stiffness matrix
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Solution of the equation is assumed as

Substituting this solution in the equations of motion we get

We take specific example with  

m1 = 2m, m2 = m, k1 = 2k, k2 = k

Two natural frequencies of vibration
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=

=

Solution for motion of two masses is given above
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For a MDOF system, governing differential equations are coupled

Solution of these equations, when DOF are large in no, is an  

extremely difficult task.

Easier solution can be obtained by transforming these equations  

into a large no of uncoupled equations each to be solved  

independently.



Decoupling of equations of motion

The displacement vector of any MDOF system can be expanded in

Terms of modal contribution

Substituting this into equation of motion of MDOF system



Decoupling of equations of motion contd

Orthogonality conditions give

The coupled equations are now reduced to a single

independent equation for mode n

Or in compact form we write

These are generalized mass, stiffness and force for mode n



Decoupling of equations of motion contd

Dividing throughout by Mn we get

where

This equation may be interpreted as the equation governing  

the response qn (t) of SDOF system shown below with mass  

Mn , stiffness Kn , and exciting force Pn

Generalized SDOF system  

for the n th natural mode

There are N such equations, one for each mode, each  

independent of other



General mass and stiffness mode 1  

General mass and stiffness mode 2

General force mode 1  

General force mode 2

m1=2m, m2=m

K1=2k, k2  = k



Modal equation of motion for mode n

Solution of the equation of motion for n th mode is

Where Cn = Is the DLF for  

Nth mode

P10 =P0/2, K1 = 3k/4,

q1 (t) = 2P0 /3k C1

Modal force mode 1

Modal displacement mode 1

P20 =-P0, K2 = 6k,

q2 (t) = -P0 /6k C2

Modal force mode 2

Modal displacement mode 2



Displacements at mass point from modal displacement

u1(t)= q1(t) x +q2(t) x

= [2P0/3k x ½ x C1 + P0 /6k x (-1) x C2 ]

= P0/6k (2C1+C2) displacement of mass point 1  

Where C1 =

And C2 =

Displacement of mass point 2



Several dynamic forces on MDOF system  

with same time variation

Modal expansion of dynamic force p(t) = s p(t)  

where all forces have same time variation and s  

represents their spatial distribution

We expand the vector s as

Pre-multiply both sides by and use orthogonality principle

We get



Several dynamic forces on MDOF  

system with same time variation contd

This can be taken as an expansion of applied force distribution s in

terms of inertia force distribution sn in terms of natural modes

If the structure vibrates in nth mode, inertia forces are



Several dynamic forces on MDOF  

system with same time variation contd

Thus we conclude from equation

That force produces response only in nth mode  

Thus force

Because of orthogonality principle



Several dynamic forces on MDOF system with  

same time variation contd example 1

Uniform 5 storey shear building



Several dynamic forces on MDOF system with  

same time variation example 1 contd

Natural frequencies are



Several dynamic forces on MDOF system with  

same time variation example 1 contd



Several dynamic forces on MDOF system with  

same time variation example 1 contd

Forces and their modal representation



Modal equation

In Modal equation of motion for nth mode

Substitute for modal force we get

Is called modal participation factor



. ..

x1, x1, x1

. ..

x2 , x2 , x2

. ..

x3 , x3 , x3

F1 f (t ) →

F f (t ) →2

F3 f (t ) →



F

When the vibratory motion is set in following equations of  

motion can be written in directions of different DOF

..

K11x1 + K12 x 2 + K13x3 + .......+ K1n xn + M1 x1 = F1 f (t)

..

K 21x1 + K 22 x 2 + K 23x3 + .......+ K 2n xn + M2 x 2 = F2 f (t)

..

K31x1 + K32 x 2 + K33x3 + .......+ K3n xn + M3 x1 = F3 f (t)

In compact form the above equations can be written as

..

 
x M x = f (t)

 
K +  



Y are the so called weightages to mode shape

 are the mode shapes for natural vibrations.

.. .. .. .. .. ..

x = Y  = Y 1 1 + Y 2 2 + Y 3 3 + Y 4 4 + ........+ Y n n

 

.. 

Differentiating both sides we get

Where  

and

The shape that a structure takesat any instant can be  

split into it's modal components. Thus we can express

x= Y = Y11 + Y22 + Y33 + Y44 + ........+ Ynn



 M  F

..

Substituting the expressions for x and x we get

..

F

n T Kn Yn n Yn

Y = f (t)K Y + 

n= f (t) T FT
n

T
n

T
n

T
n     K

This is a set of n simultaneous ordinary differential equations  

with constant coefficients.

Pre - multiplying both sides by nth mode shape n and using  

orthogonality principle we reduce the equations as follows

..

+   M  

..

Y = f (t)Y   +   M 



eq

This equation is similar to governing equation of motion  

for SDOF system subjected to specified dynamic force.

..

M x+ K x = f (t)F

Fn = n T F= Equivalent force for nth mode

eq Yn

eqM n = n T M n = Equivalent mass for nth mode

eqKn = n T  Kn Yn = Equivalent stiffness for nth mode

eq= f (t)Fn
neqKn Y + M n

Where

..
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DLF − − − function of

T and f(t)

= Y * DLF

Fo
Ystatic = 

K

Y Staticdynamic

DLF n − − − function of

Tn and f(t)

n 2
eq

Feq
(n)

Feq
(n)

(n)

=

==

eqK n
Ystatic

Staticdynamic
(n) = Y (n) * DLF (n)
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Further calculations for MDOF

Deflection of a mass point =  T * Modal dynamic deflectionn

Repeat thecalculations per mode

Add modal Dynamic deflections at each mass point as

1. Absolute sum  

2.SRSS

3. CQC type addition

Modal dynamic deflection = Modalstatic deflection* Modal DLF  

Modalstatic deflection = Modal Equivalent force/Modal stiffness

n n n=  2 T * M *n

nModal Equivalent force =  T * F

nModal Equivalent stiffness =  T * K *
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