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> X3,X3,X3

Atypical
MDOF system

'XZ,Xz,xZ

F1f(f)—>_ _.xl,)él,)-c-l

S S /4

n K21X1+K22X2 +K23X3+ ....... +K2an+M2 ).(.2 =F2f(t)

a K1) +K3pX +K33x3 + . Ky Xy + My x1 = F3 £ (1)



Equation of motion of the system with no damping and
no external force Is given as

mu—+ ku=20

This represents a set of N homogenous ordinary differential
equations of motion coupled through m and k matrices

It required to solve the equations under initial conditions

u=u(0d) u = u(0) at t = Q.



Instances a, b, C

Om >u2 % MZ(O)
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Free vibration is initiated
With arbitrary initial
Displacements Shown

In curve a

Observed motion of mass m

Observed motion of mass 2m



Under arbitrary displacements of each mass (initial condition)
We observe that the motion is not simple harmonic and

Frequency of mass can not be defined
Further, deflected shape (Ratio ul/u2) varies with time

On the other hand for SDOF system the motion is always
harmonic when displaced by any arbitrary displacement
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i
Wnder these conditions of displacements

1M Both masses reach max disp at same time

I Both masses pass through equilibrium position at same time
t
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A natural period of vibration T, of an MDF system is the time required for one
cycle of the simple harmonic motion in one of these natural modes. The corresponding

natural circular frequency of vibration is w, and the natural cyclic frequency of vibration
1S f,, where

27T
T,=—  fi=—



**  General comments on MDOF



d
l

Free vibration of an undamped system in one of its natural
Mode of vibration is givih by

u(r) = g, ()P,

Time variation of displaoa‘nent under simple harmonic motion Is
given as I

gn(t) = A, coswy,t + B, sinw,t



Natural vibration frequencies and
modes contd

combined equation Is written as

u(z) = @, (A,cosw,t + B, sinw,t)

substituting this function in equation of
motion for the entire structure we get

mu—+ ku=20

[—&Jil]'lfbﬂ -+ kd’r:]qn(r} — 0



d

L
Thus either

u
Either ¢,(¢) = 0, which implies that
|

u(r) — 0 and there is no motion of the system
d

or the naturdl modes ¢, and frequencies w,
must satisfy\l;we algebraic equation

Ikd:'n — wim‘;t’n
b



Natural vibration frequencies and

modes contd
Above equation Is rewritten as

[k — o’m| ¢, =0

This is a set of N homogeneous algebraic
equations. Non trivial solution is possible for these
equation If If

det [k — w;m| =0

This Is the so called characteristic / frequency
eguation



The determinant, on expansion , gives a polynomial of order N
Giving N real and positive roots for natural frequency mﬁ

Positive roots of above equation are the N natural
frequencies of vibration w, forn=1,23....N

They are also called Eigen values or characteristic values

For each value of @» we can solve homogenous equation

[k — o’m] ¢, =0

And obtain vector @, -- eigen vector which gives shape of
the vibrating structure when one of the value is fixed as 1



Shear building ot col =1

h  Massmatrix m=["" ]

o U, ] . i -3.!: —K
Stiffness matrix k= Lk k]
h where k = 24E1, /h>
0
mu—+ Kku=0



Subbstituting K and M in following equation
det [k — woym| =0
We get following polynomial equation

m?)w* + (=5km)w?* +2k* =0

The two roots are a)f = k/2m and w% = 2k/m, and the two natural frequencies are

\/T \/E
wp = —_— ) = o
2m m



Substituting for k£ gives

El. El.
= 3.464 = 6.928
@1 V mh3 ©2 V mh3

For each of these values we solve the following equation

[k — w’m] ¢, =0

We get eigen vectors as

o={i} &=

m =1 =1
O - uz O ¢21 %
- / /
o o My o ¢ =112 O Pig ==l
V2 T T v T 7
First mode Second mode

(01=Vk/2m (02=\/2k/m



Modal expansion of displacements

—1/3 K

l TN
= e
iz

- —+ 1/3
u = (4/3)¢, + (-1/3)9,
U;= 019011102012 b=l @y=l g7

Us= 0192102022 b, =1, &,,=1, ¢g,=1/3,



Modal expansion of displacements contd.

v=DY ;S0 T

v, =Y101, +Y20,,7Y303

U;=03Y;

v, = Y10, + V50,7305

vy = Y1031 + Y505, Y5055



O

Natural modes corresponding to different natural
frequenciehan be shown to satisfy following
orthogonality condition wrt mass and stiffness

O
Tkep, = 0 ¢, mp, =0
J

We shall infy the same with a 2 DOF system and then
prove it fqngeneral case

d
I



Verification of orthogonality of modes 1 and 2

=1 =1

/ /
¢ll = 1/2 ‘

AN

P =-1

77
First mode Second mode
(01=\/k/2m (:)2=V2k/m

1
@nM}@Q} —_ ZXZ?TLX(_—T) = —m
@21M2@22 — lxmx(l):m

summation 18 zero



Proof of orthogonality of any two distinct modes of natural vibbration

Betty maxwel’s reciprocal theorem

Work done by one set of forces on the deflections
caused by Other set of forces

IS equal to

Work done by other set of Forces on the
deflection caused by first set of forces

For system under natural vibration only inertia forces are
Acting on the system



System vibrating in modc no m, having r no of masscs have
following parameters

Masses myq, mo, Mg, .. ..M,
Deflections @11y, @21, @3y -+ - By

Incrtia forces Mm@y, ws,. MoBop sy, M3Daym Wi ... My Dy Wi,



System vibrating in modc no n, having r no of masscs have
following parameters

Masses myq, mo, Mg, .. ..M,
Deflections @1, @00, D30y ... Oy

Incrtia forces Mm@, w5, My@o,ws, Mo, ws . .. M0, wh



Using Betty Maxwell’s reciprocal theorem

Work done by r forces of mode m on deflections of mode n

m1@}m(’)grz X Q)In + mZQ)Zm(U%Q X Q)Zn Liannadsd mTQT?ﬂ(U?%l X @rn

7 o r=noof masses
W Zr—] My @‘rm @Tn

=Work done by r forces of mode n on deflections of mode m
=my D1pwf X Qi + MuDopwi; X Oy + -~ mp0rpwf X Oy

o xY=noof masses
—Wn zr:1 m, (Drn @rm



By Betty maxwel’s reciprocal theorem

r=no of masses

r=no of masses )
- o My Qrn @
a)??n z My By Dy, — n zl r¥rn¥rm
T =
r=1

r=no of masses

(w%l_w?%.) Z My Qrm@rn =0

r=1

- . . - . 7
Giving the orthogonality principle when (w3, # w3)

r=no of masses

> MmOy, =0

r=1



Modal vectors

A modal displacement shape is considered as a vector with rno
of components ( one for each DOF)
Thus for modes m and n we have modal (shape) vectors as

For geometric orthogonality in 3D
space for two vectors (say forces)
Fix F1y F1,and Fy, Fo Fo, We prove
orthogonality by taking the dot
product of the two vectors

le |:2x + |:1y |:2y + I:12 FZZ =0



Concept of modal analysis of
MDOF system

General equation of motion of MDOF system ( without damping)
subjected to any dynamic force is given by

(MUK |U={p(t)}

[M] IS n X n size mass matrix

[K] IS n X n size stiffness matrix

{p(t)} is n x 1 size force matrix

It is extremely difficult to solve these coupled simultaneous
Differential equations when DOF is a large no.

Better option is to convert these equations into modal equations
And then solve such simple equations for each mode of natural

vibration



O

1K 0=p(0))

In this e&Jation we substitute the modal contribution as

e N
u(t) = ) _ brq,(t) = q(t)

D =i

¢,= mqde shape for r th mode
dr((t)=weightage given for r th mode at time t

O
.|:

| " Y |



Concept of modal analysis of MDOF
system contd

.IV
MUK |U={p(t)} USe u@) =) ¢q)=dq()
r=I1

Substituting value of U andU we now get

N

N
Y moG 1)+ Y Kepq () =p)
r=I|

r=1

Premultiplying each term in this equation by ¢! gives

N N
Y ¢lme, G0+ Y ¢l ko, q.) = ¢l p(t)
r=| r=1



C
0

Because of the Drthugunahty relations all terms in each of the summations

vanish, except tthe r =n term reducmg this equation to

(@I me,) Gu(t) + (P k) gu(2) = &) p(2)

P M, 4.(t) + K, q.(t) = P@)

t

Where  p — 47m¢, Isthe modal mass  Or generalized mass
KP: o kg, Isthe modal stiffness Or generalized stiffness

£ .
P.(1) = o p() Is the modal force Or generalized force
For mode n

or

| " Y |



M, gn(t) + K, q,(t) = P,{(t)  Eqg. of motion for n th mode

mii + ku = p(?) Eq. of motion for SDOF

The two equations are similar

the modal equation for n th mode will give solution for g,, for nth
mode.

Displacements of other mass points can be determined from mode
shape

Such transformation can be done for each moden=1,2,3 --- n

Thus a set of N coupled differential equation is transformed

Into N uncoupled differential equations in modal coordinates
d,n=1,2,3--n



Modal Equation of motion for ground motion as
Input Is given by

Equation of motion for MDOF subjected
to ground motion is given by

I\/I(X+ Xg)|+|<xzo

M X+ KX =-M X,
Using modal split up of general
displacement X

MY g+ KYp=-M X,
where Y@= Yo +Y o + Y3g03 o

and Y¢:Y1¢1+Y2¢2+Y3(p3+....



Premultiplying both sides by ¢

ol J ) )
QMY p+p KYp=-pMX,

i

n

@MY 0, + 0 KY.p, =—pMX,
which we can write as

M YotK, Y, =—0"M X, =—p M Uy, f(t)

neq n
t

h



where

M}, = ¢, Mg, = Equivalent Mass
K:, = @, Ko, = Equivalent Stiffness
and

no of masses

oM = ;M@m



Modal Response Is Given by
D, = Modal Static deflection X DLF




Displacement Response at any mass point r inoriginal
structure Is given by

v .
Drn- 2 ”bzfn Ud x¢ DLFp
> Mrg2rn of

Pseudo acceleration Response at any mass point r
In original structure is given by

wn =D N X @ 2= >Mrdn .o xdDLF
D, i g ZMr¢2mug #nDLFn




Pseudo Inertia force at any mass point r
In original structure is given by

_ M .
=M ZZM rfzrpnug X¢mDLF
r




Seismic force as per IS 1893-2016

Z a
Oy = A9, B W, A =[2][

;zrn /- ( ug DLF,,‘)MI. As per theory
rn



a
I
« SDOF C
Ydynamic = Ystatic DLF
Fo |
Ystatic = K d
DLF ———functic?n of
T and f(gt)
n
S

N

« MDOF
Ydynamic(n) YStatlc(n) *DLF (n)
- (n)
Ystatic V= —
Kgq
) Feq(n)

M&wz
DLF" — — —function of

T, and f(t)



Seismic analysis of MDOF system RHA

We now consider a tower and a typical building frame
subjected to ground motion

Rigid-body I uj’ u;
motion —>
‘—o u; |"> "
[
motion j ( i)

1 ( 5

77

et ey, e,

At any instant displacement is given as ui () = uj(t) + ug(t)



Seismic analysis of MDOF system RHA contd

Equation of equilibrium in dynamic state is given as
fi + fS:O

M(u + U, )~Ku=0

Mit +Ku =-Mu ,=-Mu (1)

M

O o> iU,
O o Uy
O > U

m

m

5 storey plane frame



Structure property matrix and free vibration characteristics

The mass and stiffness matrices of the structure are

-1 - - 2 -1 7]
| —1 2 —1
m=m 1 K=« —1 2 —1
1 -1 2 -1
_ 1 _ _ -1 1

Determined by solving the eigenvalue problem, the natural frequencies are

K\ 72
e}
m

where oy = 0.285, ap = 0.831, a3 = 1.310, o4 = 1.682, and a5 = 1.919.



Structure property matrix and free vibration characteristics contd.

Mode 1

1.173

1.078

0.895

0.641

0641 1.173

0.334

(.895

1.078

Mode 2

"L

1.173

1.m<

Mode 3

: 0.334

1.078 i

Mode 4

0.895 <

7 0.334

> 1.173

1.078

> 0.641

7
Maode 5

o.sgsé

Natural modes of vibration of uniform five-story shear building.



5@h=5h

Equivalent SDOF systems

Effective modal masses and effective modal heights.

4.398m
- <
2 0.436m
O 0.121m 0.037m
o D o~
- S . )
— ﬁg(t) 7 o < T S T
Mode 2 3 4 5

o iig( 1)



Response history analysis for El centro N-S ground motion

D, in.

5.378
2.583
1.505
0.877
-—% Aoy
0.653
0 5 10
Time, sec

15

13 0.1375 Mode 1

() e O e e

£

17 0.5628 2

O H

-1 -

11 3
© g —%WQWWW
R 0.8149

1,0.7837 4

0 ]

-1 -
1 5
O-WWWWM
17 0.7585
0 5 10 15
Time, sec

Displacement D,(t) and pseudo-acceleration A,(r) responses of modal SDF

systems.



Total response history representation for top floor displacement

g 6.731
O J
'8 - - .
. Roof displacement
0.936
-8
. 8 modal contributions, u#s, ()
i 0 -
§ ] 0.239 _
R and total responses, us(t)
0
0.055
-8
8.
0 0.01
-8
g, 6.847
g 0..%%;:\
3 5.
0 5 10 15

Time, sec



RESPONSE SPECTRUM ANALYSIS

Response history analysis presents structural response as a
function of time but structural design is usually based peak values
of forces and displacements over the duration of earthquake

Peak response of SDOF system can be accurately determined by
using response spectrum for a given ground motion as the
response spectrum is drawn using a SDOF system only

For MDOF system, there are some additional concepts which
need to be used to get total (maximum) response of the structure



Timing of peak response in RHA

g 6.731

0 J

N Modal and total

8 ; response

() e g et B A g e

0.936
-8
. 8 ]

=
5 0 ~—
&l 0.239

8

0 =

0.055

_8 4

8 -

0 001

R

g 6.847
g o
¢ .

0 5 10 15

Time, sec



Modal combination of response

In response spectrum, only peaks are collected from

different modes
For different modes, peaks are reached at different times

during the earthquake
Even the combined response reaches maximum at yet

another time

Approximations must be introduced in combining the peak modal responses r,,
determined from the earthquake response spectrum because no information is available

when these peak modal values occur.



Modal combination of response contd.

In response spectrum, only peaks are collected from

different modes
For different modes, peaks are reached at different times

during the earthquake
Even the combined response reaches maximum at yet

another time

Approximations must be introduced in combining the peak modal responses r,,
determined from the earthquake response spectrum because no information is available

when these peak modal values occur.



Modal combination of response contd.

All peaks occurring at same time with same sign is an
upper bound on the solution

Thus actual response is always less than this upperbound

N
Yo = Z‘rnﬂ

n=I



I\?Jodal combination of response contd.

) O O & DO = 2992 Cc O O»Ww D



Modal combination of response contd.

Complete quadratic combination (CQC) rule is a modal
combination rule applicable to a more wider variety of problems

1/2
’0 p— (E : E :pmrlorno)

=1 n=

Yo =Peak response at any mass point

Fio  =Peak response at that mass point in mode i

Yro =Peak response at that mass point in mode n



= Corelation coeff between
mode 1 and mode n

8E2(1 + Bin) B2
(1~ B2+ 4228, (1 + Bin)?

Pin

¢ = modal damping, generally 5 %

Bin = frequency ratio = w; /w,

IS 1893-2015 gives same equations

p;; = crbss-modaleotrelation co-efficient

where 8 £’ (1+B) B

=3 3 aQ@ 1, = : .
\/22 A (1-B*) +4 €B (1+B)

L

B = natural frequency ratio = P :

1

A = estimate of peak rgspense quantity;

A; = respoftse quantittimrmode / (with sign); ¢ = modal damping coefficient ratio which

A; = response quantity'in mode j (with sign); shall be taken as 0.05:



Floor Mass  Story Stiffness

o> u5 m

k
= l¢4 m

k
= l¢3 m

k
= u2 m

k
] m

k

e

S

N\



) = 0.285, ayr = 0.831, 03y = 1.310, Q4 = 1.682, and s = 1.919.

0.334

Mode 1

1.173

1.078

0.895

0.641

0641 1.173

(.895

0.334

Mode 2

1.078

0641

1.078

0.3%

1.173

Mode 3

1.173<

70641

1. ()';:ai/7

Mode 4

0.895 < 1.078

7 0.334

ososé
> 1.173

; a

Mode 5
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Modal displacements and modal (equivalent) static

~ (a)Mode1 ~ () Mode2 ~ (c)Mode3
f) (kips) u; (in.) f; (kips) u; (in.) f3 (kips) uj3 (in.)
17.211 6.731 20.382 0.936 12.923 7 0.239
15.817 6.186 6.313 0.290 9.245 0.171
13.141 J5.]39 12.114 N 0.556 15.554 = ( 0.287
9.401 / 3.677 22.179 \ 1.018 4.818.4&0.089
4.899 1916 16.934 j 0.777 16.925 0.313
L Iy L7

‘e Vi = 60.469 Kips
\_/
My, = 2549 4 kip-ft

‘e Vi = 24.533 Kips
-~
My, = 354.33 kip-ft

'« V3 =9.867 kips
\_/
Mb3 = 00.402 kip-ft

~ (@Moded ~ (e©)Mode5
f. (kips) u; (in.) fs (kips) us (in.)
4.951<—v 0.055 1.141 0.010
9.064 \ 0.101 3.061 0.026
2.580 0.029 4.008 0.034
6.920 0.077 3.684 0.032
8.330 0.093 2.189 0.019
77 7. 7. %
a——Vn=2943kips Vs =0.595 kip
M4 = 20.986 kip-ft M,s = 3.718 kip-ft




PEAK MODAL RESPONSES

Vi Vs My, us
Mode  (kips) (kips) (kip-ft) (in.)

| 60.469  17.211 25494 6.731
2 24,533 -20.382 35433 -0.936
3 9.867 12.923 90.402  0.239
4 2943  —4.951 —-20.986 —0.055
5 0.595 1.141 3.718 0.010



RSA and RHA values of peakresponse

Vi
(kips)

ABSSUM  98.407

SRSS
CQC
RHA

66.066
66.507
73.278

Vs
(kips)

56.608
30.074
29.338
35.217

My,
(kip-t)

3018.8
2575.6
2572.7
2593.2

us

(in.)

7971
6.800
6.793
6.847



End of presentation



D
r
Rigid beams
&) o UD -
o £ Consider the 2DOF system
ky subjected to harmonic force
P, Sin @t O o> U| as shown
3]
= Story stiffness : i
4 Equations of motion of the

777 77/,7 system are

5 el [ 5l (5]

Above equatlgns are coupled through stiffness matrix



M

D
O

Solution of Fre equation is assumed as I 3; ’ = [ 2" } sin wt
S

Substitutindythis solution in the equations of motion we get

S

kl -+ k2 et mlw2 —k2 Ule | _ ) Po
—k» ky —maw? | lup | ~ | O
e

We take dddcific example with
m; =2m,gn,=m, k; = 2k, k, = K

— r [ = : - . .
i = Vk/2m and oy = 2k/m:  Tywq natural frequencies of vibration

Db



2 :
iz = polk — ma’) Uy = Ul sinwt
2m2(w? — cz)%)(a)2 — w%)
S
Pok Uy — Uy
Uny = 2 = U2 sinwt
2m2(w? — lf:.l%)(m2 - w%)
J

SolutiJn for motion of two masses Is given above
€

m
S
u
b



D
O
For a MOOF system, governing differential equations are coupled
S mil + ku = p(¢)
y

Solution®f these equations, when DOF are large in no, is an
extremely difficult task.

Easier sglution can be obtained by transforming these equations

Into a large no of uncoupled equations each to be solved
independditly.

S
u

b



Decoupling of equations of motion

The displacement vector of any MDOF system can be expanded in
Terms of modal contribution

N
U@ =) 9,a,(t)
r=1

Substituting this into equation of motion of MDOF system

N

N
Y mo G+ Y kg () =p@)
r=1 =1

Premultiplying each term in this equation by ¢! gives

N N
Y oimo, G+ Y ¢l ko, q.) =] p@)
r=|

r=1



Decoupling of equations of motion contd

Orthogonality conditions give
O'kp, =0 ¢ mep, =0 @, # o,

The coupled equations are now reduced to a single
Independent equation for mode n

(O] my) Gn (1) + (] Kdn) gu(t) = B} p(2)

Or in compact form we write
M, Gn(t) + Ky, gn(t) = P,(2)

M,=¢,m¢p, K,=¢ ko, Pit)=0)p@)

These are generalized mass, stiffness and force for mode n



Decoupling of equations of motion contd
Dividing throughout by M, we get

Gn + 02 Gn = P;;t) Where Ky = oM,

This equation may be interpreted as the equation governing
the response g, (t) of SDOF system shown below with mass
M, , stiffness K, , and exciting forceP,

. lt :

1k ’—° 1) Generalized SDOF system
7 T

—ooui— u, =P for the n th natural mode
% i

There are N such equations, one for each mode, each
Independent of other



m;=2m, m,=m

Rigid beams
{) o> Uy
oS
my % K=2k, k, =k
P, Sin 6 O & U
ny
k| = Story stiffness
7 77 M,=¢mep, K,=0,ke, P,(t)=0]p@)
k T |
W) =,/ — Py(t) = ¢, p(t) = —p, sin wt
2m ——
P".o
T .
o1 =(3 1} ¢ =(-1 1)
v Im X 12 General mass and stiffness mode 1
1 =5 1=
2 General mass and stiffness mode 2
Mg = 3m Kz = 6k

P1(1) = &7 p() = (po/2) sin x  O€NETal force mode 1
e

Pr(t) = I p(t) = —p, sinwr ~ G€Neral force mode 2
—

PZ:)



My Gn + Knqn = Ppo sin . Modal equation of motion for mode n

Solution of the equation of motion for n th mode is

Py » _ |
K, s Where C,= 1= (@/wn )2 Is the DLF for

Nt mode

gn(t) =

P,o=Py/2, K, = 3k/4, Modal force mode 1

q, (t) = 2P,/3k C;sin wr  Modal displacement mode 1

P,o=-P,, K, = 6k Modal force mode 2

0, (t) = -P,/6k C, Modal displacement mode 2



Displacements at mass point from modal displacement

Us(t)=0a(t) X D11 +0x(t) X D1
= [2Po/3k X Y2 x C;+ Pylok x (-1) x C,] sin wt
= Py/6k (2C,+C)) Sin o displacement of mass point 1

1
1= (“/w,)?
1
And C,= 11— (©/w,)?

Where C, =

p pO 5, a . -
up(t) = g @0 —C2) sinwt Dpigplacement of mass point 2



Several dynamic forces on MDOF system
with same time variation

Modal expansion of dynamic force p(t) = s p(t)
where all forces have same time variation and s
represents their spatial distribution

We expand the vector s as

S:Z s,:z I, m @,

r=I1 r=1

Pre-multiply both sidesby ¢, and use orthogonality principle

T
_ S

r
We get "=




Several dynamic forces on MDOF
system with same time variation contd

The contribution of the nth mode to the excitation vector s 18

S, = rnm¢n

S:Z s,:z 'y mo,

r=I1 r=1

This can be taken as an expansion of applied force distribution s in
terms of inertia force distribution s, in terms of natural modes

If the structure vibrates in nthmode, inertia forcesare

(f;), = —mi, (1) = —m ‘;bn én (1)



Several dynamic forces on MDOF
system with same time variation contd

N N
Thus we conclude from equation s = Z S, = Z I, mao,

r=I1 r=I1

That force s, p(z) produces response only in nth mode

Thus force  P.(1) = ¢! s, p(t) = Tw(! m¢,) p(r)

Because of orthogonality principle P.(z) =0  r #n

forr =n 1s Pn(f)=Fnan(f)



Several dynamic forces on MDOF system with
same time variation contd example 1

Floor Mass  Story Stiffness

o> t¢5 m
k
= l¢4 m
i Uniform 5 storey shear building
= u3 m
k
) > U, -
k
- ul m
k

M o



Several dynamic forces on MDOF system with
same time variation example 1 contd

The mass and stiffness matrices of the structure are

B - - 2 -1 n
] —1 2 —1
m=m 1 K=« —1 2 —1
1 -1 2 -1
_ 1_ _ -1 1

Natural frequenciesare  w, = a, (—)
m

a, = 0.285, a, = 0.831, a3 = 1.310,a, = 1.682, a5 = 1919



Several dynamic forces on MDOF system with
same time variation example 1 contd

Natural modes of vibration of uniform five-story shear building.

b1 = {

0.334)
0.641
0.895
1.078

L L1173

0.334

Mode 1

0.895

0.641

$2 = |

\

1.173

1.078

1.173

(.895

0.641

—0.895)

—1.173

—0.641 }
0.334
1.078 |

0334

"’

Mode 2

1.078

1.078

1.173 )
0.334

—0.641

Obé

0.895 |

0.334
1.173

Mode 3

—1.078 }

[ —1.078 )
0.895

—1.173
0.641 |

0.334

0.641)
-1.078
1.173
—0.895

e

0.334 |

7 0.334

> 1173

1.078

> 0.641




Several dynamic forces on MDOF system with
same time variation example 1 contd

Forces and their modal representation

————e— 2 —e-0.385 —0.508 — (0.564 —e-0.407 » 0.135
| «—-ro 0,354 e-0.157 0.403 = 0.746 «+——o 0.363 w—
e (0.204 0.302 0.679 o— - 0.212 L 0.475
= - + + +
- 0.210 0.553 w— =~ 0.210 = .569 0.436 i
»0.110 0.423 e —0.739  0.685 «—Fo Le-0.259

Sb S1 L) 83 S4 S5



Modal equation

In Modal equation of motion for nth mode

Py (1)
M,

éjn + 28, @, C}n = w,zz dn =
Substitute for modal force p,(¢r) = ', M, p(z) We get

Gn + 280 @n G + @2 g = Tp p(2)

The factor I',  Is called modal participation factor

L an L S

is a measure of the degree to which the nth mode participates in the response.



F3f(’[)—)_ . X3,X.3,X.;3

F2 f (t)_>_

— X2, X2, X2

Fy f (t)—) e X1, X1,X1




When the vibratory motion is set in following equations of
motion can be written in directions of different DOF

K11X1 + K12X2 + K13X3 +....... + K1nXp + M¢ ).(.1 = F]_f (t)
Ko1X1+KooXo +KogXg +....... + KopXp + M> ).(.2 = sz(t)

K31X1 + K32X2 + K33X3 + .. + K3n Xp + M3 X1 = Fgf (t)
In compact form the above equations can be written as

4 A

[<Ix}+MFxt = f O F )

. J




The shape that a structure takesat any instant can be
split into it's modal components. Thus we can express

Xf=Yg=Yadi+ Yot + Yads+ Yadu+ ooty
Where Y are the so called weightages to mode shape

and ¢ are the mode shapes for natural vibrations.
Differentiating both sides weget

4 A

IXe=YP=Y1h+Y2 b +Y3+Yady+........ +Yn

. J




Substituting the expressions for x and x we get

KKl + M Jply = f O fF )

Thisisa set of nsimultaneous ordinary differential equations
with constant coefficients.

Pre - multiplying both sides by nt" mode shape ¢, and using
orthogonality principle we reduce the equations as follows

4 7 KB+ {4 ] IMESY =t {h ) F}
(TR Yo + 0 | M T 30 = £ O J{FS



[Kl?q Yn + [M]Qq Yn = f(t){F}Qq
Where
KE, = {¢h)'[K]{h Yo = Equivalent stiffness for n' mode

ME, = {1} [M [{hj=Equivalent mass for n'" mode

\Flog = 1¢h}"{F }=Equivalent force for n!" mode

This equation is similar to governing equation of motion
for SDOF system subjected to specified dynamic force.

M x+ Kx = f (t)F



a
I
« SDOF C
Ydynamic = Ystatic DLF
Fo |
Ystatic = K d
DLF ———functic?n of
T and f(gt)
n
S

N

« MDOF
Ydynamic(n) YStatlc(n) *DLF (n)
- (n)
Ystatic V= —
Kgq
) Feq(n)

M&wz
DLF" — — —function of

T, and f(t)



Further calculations for MDOF
Modal dynamic deflection= Modalstatic deflection* Modal DLF

Modalstatic deflection= Modal Equivalent force/Modal stiffness

Modal Equivalent force=¢] *F

Modal Equivalent stiffness = ¢] *K *¢. = @2d] *M *¢,

Deflection of a mass point =@ * Modal dynamic deflection
Repeat thecalculations per mode

Add modal Dynamic deflections at each mass point as
1. Absolute sum

2.SRSS
3. CQC type addition
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