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❖ Education
▪ Postdoctoral studies, Eindhoven University of Technology, 

Eindhoven, The Netherlands.
▪ Doctor of Philosophy, Concordia University, Montreal, Canada
▪ Master of Science (Engineering), Indian Institute of Science,

Bangalore, India
❖ Dr. Suresh Kumar based in London, UK,  is well recognized 

leader in the field of wind engineering.
❖ He has over 32 years of experience as a wind engineering 

researcher and consultant internationally. 
❖ He has been with RWDI for the past 21 years. 
❖ He has directed the establishment of RWDI’s 5th wind tunnel in 

Trivandrum, India. 
❖ He has worked as a wind consultant on many iconic structures 

worldwide, including the world’s tallest tower, the Burj Khalifa 
in Dubai. 

❖ He has published or presented numerous papers in 
international journals and conferences. 

❖ He is also very active in professional organizations around the 
world.



WIND ENGINEERING FOR  
LONG-SPAN BRIDGES
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– PART 1

K. Suresh Kumar, PhD, PEng, MASCE
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RWDI’s Key Experiences
BRIDGE NAME SPAN (m) LOCATION

Messina Strait (Suspension) 3300 Sicily to Calabria, Italy

Golden Gate Bridge (Suspension) 1280 San Francisco, CA, USA

Stonecutters Bridge (Cable- 

Stayed)
1020 Hong Kong, China

Tacoma Narrows (Suspension) 853 Tacoma, USA

Millau Viaduct (Cable-Stayed) 342 Millau, France

TALL BUILDING NAME HEIGHT (m) LOCATION

Kingdom Tower 1000 Jeddah, Saudi Arabia

Burj Khalifa 828 Dubai, UAE

Shanghai Tower 632 Shanghai, China
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Outline

• Introduction

• Wind Climate Analysis (for deck, pylons, 
cables)

• Desktop Stability Assessment (for deck, 
pylons)

• Sectional Model Test (for deck)

• 3D Buffeting Analysis (for deck, pylons, 
cables)

• Concluding Remarks

Future Webinar:
Aeroelastic wind tunnel study, Vehicle-induced vibrations, Pedestrian-induced 
vibrations, Supplementary damping considerations, Cable stability analysis, Full-scale 
measurements, Health monitoring and retrofitting.
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Introduction

Tacoma Narrows, Washington, USA

Volvograd Bridge, Russia

Tacoma Narrows: 

Span/Width – 1:72

Span/Depth – 1:350  

Weight – 4.25 ton/m

Golden Gate:

Span/Width – 1:46

Span/Depth – 1:168  

Weight - 21 ton/m
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Introduction

Angus Macdonald Bridge, Halifax,

Canada

Millennium Bridge, London



Weight –  100,000 ton

Weight ~ 1500 ton/floor 
(500 ton/m)

Introduction
• Light Weight (10 –  50 ton/m) ; Pedestrian (<5 ton/m)

• Supports only at ends (Contrary to tall buildings where gravity advantage)

550 ton

1
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Introduction Classification of Wind Effects on  
Bridges

No Vibrations

Vibrations

(g = ~ 3.5)

(g = ~ 1.4)

(Sc < 2.5)

(dCz/d <0, B/D<5)

(cross-section (H), ft low

(ft /  fv <2)

1

1
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Flow Phenomenon
Introduction
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Vertical motions

Flow Phenomenon

Vortex-induced oscillations

Galloping –  Negative aerodynamic damping



Torsional motions

Flow Phenomenon

Vortex-induced oscillations

Flutter –  Negative aerodynamic damping



Vertical motions

Flow Phenomenon

Turbulent buffeting response



Flow Phenomenon
Introduction

1
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When to consider wind study?

Suggested Screening Criterion

if WT<1.0, WT = (Sc) (B/L) (B/D) (fB/V);

then consider wind engineering study 

where

Sc = m/B2 (Scruton number);

m - mass per deck length;

 - structural damping ratio;

 - air density;

D - deck depth (should include height of traffic barriers);

B - deck width edge to edge;

L - main span length;

f - lowest torsional frequency;

V - 50-year return period speed.

Introduction

1
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Introduction

Figure 3: Parameter WT vs. span for various wind tunnel tested bridges

When to consider wind study?

Database of 44 bridges, wind tunnel tested by RWDI

1
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Introduction

Criterion Interpretation

WT<1.0 is a sign that wind study may be required

Other simple indications

- Footbridges, main span longer than about 200 ft (50~60 m)

- Highway bridges, main span longer than about 300 ft (100 m)

- Fundamental period higher than 1 sec (lower than 1 Hz)

- Bluff deck cross-section with solid or high barriers

Advice:

1. Take the opinion of a wind engineering specialist

2. Early proper planning could be critical

When to consider wind study?

1
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Introduction

Wind climate analysis –  wind characteristics required for verification
of aerodynamic stability and derivation of design loads

Desktop stability assessment –  performed to verify stability of bridge
at early stages of planning

Sectional model test –  performed to verify the stability of the bridge, 
unacceptable motions, mitigation measures, force coefficients

Buffeting analysis –  analytical simulations to determine structural
responses & load distributions

Essential wind engineering studies required are

2

0



Wind Climate  
Analysis

2
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Wind speed vs  
return period

• Meteorological data from airports, weather stations, masts, balloon
data etc.

• Reliability of existing data??

• Monte-Carlo based cyclonic simulations are essential for the coastal
regions in tropical climates in the absence of real measurements

• WRF numerical modeling could be adopted to simulate a large set of 
data for the interior regions of India (absence of data & topographical 
effects)

• Return Periods –  20, 100, 1000, 10000

• Uncertainty in speeds leads to conservative assumptions –  elevate 
design demands, uneconomical structures

2
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Wind speed vs  
return period

ASCE 7-10 recommended speeds Predicted Wind Speeds

2
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Directionality

2
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Wind Climate Effects of topography:

- Increasing the speed of oncoming winds
(funnelling),

- Redirecting winds (steering),

- Changes in turbulence.

North

South

EastWest

125°
Bridge Axis

215°

Open Water

Profile

Open Country 

Profile

2
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Wind Climate

Detailed topography tests:



Complex surroundings



Topographical
Model
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Anji Khad Arch Bridge, Jammu & Kashmir

270

240



Topographical
Model
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Anji Khad Arch Bridge, Jammu & Kashmir

Mean wind speed
Local flow angles  
(horizontal &  
vertical)



Topographical
Model

Anji Khad Arch Bridge, Jammu & Kashmir

Table 1: Design Wind Speeds for the Anji Khad Arch Bridge

Return  

Period 

(years)

Application A Corresponding Wind Speed 

at Deck Height (m/s)

3 Second 

Gust

Mean 

Hourly

10-Minute  

Mean

3-Second  

Gust

10 Construction Stage Loading 32.4 28.3 30.0 41.1

50 Basic Design Wind Speed – 

IS: 875

39.0 34.0 36.1 49.5

100 Structural Design of 

Completed Bridge

41.4 36.1 38.3 52.5

1000 Stability - Construction Stage 50.4 43.9 46.6 63.9

10000 Stability - Completed Bridge 59.3 51.8 54.9 75.3

Note: A = Wind speed at 10 m in Category 2 terrain (m/s)

3
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Desktop Stability  
Assessment

3
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Desktop 
Stability 
Assessment

• Analytical calculations based on past experience and RWDI 

database of past wind tunnel tests

• Early notification of potential problems, and identify way

forward

• May require simple 2D CFD studies if deck geometry is unusual

3
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Understand the flow 
patterns

Identify possible
instabilities

Evaluate mitigations  
and their effects on 
the flow

Estimate the mean 
forces (drag, lift and 
moment)

Preliminary evaluation using CFD



Recent study – using CFD and sectional model tests

2.5-m height envelope

Cd: +7% versus baseline configuration

Contour line corresponding to 66% of the free stream velocity

CFD can give early indications and reduce the number of wind tunnel

tests



Sectional Model Test
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Sectional
Model Test

Stability Design Criteria

Construction: 1,000-year return period, zero angle of wind incidence 

Onset speed > 1000-year return period speed at bridge

Flutter

deck

Completed: 10,000-year return period, zero angle of wind incidence

Onset speed > 10000-year return period speed at bridge

deck

• For higher angles of attack, one can reduce wind speed criteria (~20%)

• State of flutter if the torsional amplitude exceeds 1.5 degrees

5% of gravity up to 30 mph (13 m/s) (1.8% g for tall buildings)

10% of gravity from 30 to 50 mph (22 m/s).

If above 50 mph –  become a strength or fatigue issue, not comfort

Vortex 

Shedding 

Induced 

Oscillations



Sectional
Model Test

• Pass or Fail Test

• Carried out at the preliminary design stage to assess the aerodynamic

stability of the deck section

• Aerodynamic Phenomenon: Flutter, Vortex Shedding, Buffeting

• In case of instability, remedial measures will be suggested and 

confirmed through wind tunnel tests. The wind tunnel becomes a 

design tool, providing evidence of the performance of a geometry and a 

mitigation solution

• Other results once stability confirmed: Static coefficients, aerodynamic 

derivatives

3
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Sectional
Model Test FZ

FY

MX

3
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Sectional Modal Test

3
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Sectional 
model test

4
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Mode 2, f = 0.086 Hz

Mode 7, f = 0.189 Hz

• Sectional model tests at scale in Guelph or the UK wind tunnels

• Model on springs free-to-respond to investigate aerodynamic stability

• Measurements of static aerodynamic force and aeroelastic coefficients

Wind Tunnel Study – Sectional Model – Golden Gate 
Bridge



Sectional model test, twin bridges

Interference  

effects 

between 

bridges

Effects of 

traffic on 

aerodynamic  

stability



Twin deck  
sectional model  
tests
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Sectional
Model Test • Sectional models - rigid and

geometrically represent a segment 

of the full-scale deck

• Typical geometrical scales are in 

the range of 1:30 ~ 1:80

• Materials used for construction:

Brass, Aluminum, Wood, Plexiglass

• Non-dimensional parameters

4
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Sectional
Model Test

• Geometric Similarity

• Kinematic Similarity (Partial turbulence simulation)

• Dynamic Similarity

𝑀𝑎𝑠𝑠

𝐿𝑒𝑛𝑔𝑡ℎ
𝑀

=
𝑀𝑎𝑠𝑠

𝐿𝑒𝑛𝑔𝑡ℎ
𝑃

1

𝐿𝑒𝑛𝑔𝑡ℎ 𝑆𝑐𝑎𝑙𝑒

2

𝑀𝑀𝐼

𝐿𝑒𝑛𝑔𝑡ℎ
𝑀

=
𝑀𝑀𝐼

𝐿𝑒𝑛𝑔𝑡ℎ
𝑃

1

𝐿𝑒𝑛𝑔𝑡ℎ 𝑆𝑐𝑎𝑙𝑒

4

𝑆𝑝𝑒𝑒𝑑𝑀 = 𝑆𝑝𝑒𝑒𝑑𝑃
𝑓𝑀

𝑓𝑃

1

𝐿𝑒𝑛𝑔𝑡ℎ 𝑆𝑐𝑎𝑙𝑒

𝑓𝑇

𝑓𝑉 𝑀

=
𝑓𝑇

𝑓𝑉 𝑃

𝛽𝑀 = 𝛽𝑃

4
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Sectional
Model Test

Modeling

4
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Sectional
Model Test

Key Parameter Full Scale Model Scale 1:60

Target Actual

Vertical frequency 0.121 Hz -- 1.53

Torsional frequency 0.347 Hz -- 4.5

Frequency ratio 2.87 2.87 2.94

Deck mass + 2x Cables 17,600+2x 2800 kg/m 15.47 kg 15.4 kg

Deck mass moment of inertia (mmi) 1,041,000 kg.m2/m 0.193 kg.m2

0.240 kg.m2

Equivalent mmi, Mode 19 2,067,000 kg.m2/m 0.383 kg.m2

Vertical damping 0.2 ~0.3 % 0.2~0.3 % 0.25 %

Torsional damping 0.2~0.3 % 0.2~0.3 % 0.30 %

Key parameters of the sectional model

4
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Sectional
Model Test

4
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Sectional
Model Test

Aerodynamics

4
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Sectional 
Model Test
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Sectional 
Model Test

Cd = 1.3, Golden Gate Bridge
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Sectional 
Model Test

End fairing

10.0

5.0

15.0

20.0

P
e
a
k

 v
e
rt

ic
a
l 

d
e
fl

e
c
ti

o
n

 (
in

)

0.0

0 15 30 45 60 75 90 105 120 135

Wind speed (mph)

Turbulent Flow

5%g 10%g

Unacceptable

Acceptable

Baffle plates

Aerodynamic Mitigation Measures
5

2



Sectional 
Model Test

Aerodynamic Mitigation Measures
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Sectional
Model Test
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M

F  L

F  Z

z
Drag:

Lift:

FX = ½  d U2CX

FZ = ½  b U2CZ

Moment: M = ½  b2U2CM

Force and Moment Coefficients
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Sectional
Model Test

Aerodynamic Derivatives
5
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3D Buffeting Analysis

5
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3D Buffeting
Analysis

• Statistical predictions of peak responses
• Direct integration of dynamic equations of motion in time domain

• Inputs
• Static aerodynamic force & moment coefficients

• Mass and MMI

• Bridge dimensions

• Mode shape & frequencies

• Structural damping

• Wind turbulence properties

• Aerodynamic derivatives

5
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3D Buffeting
Analysis • Time domain approach involves two steps

• Numerical simulation of turbulence velocity histories and wind loads

• Evaluation of structural response due to these loads

Tacoma Narrows Bridge –  Response power spectra at the middle span

5
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Dynamic information 
from design team 
(frequencies, modes,  
mass distribution)

Local wind-climate 
parameters (wind speed, 
turbulence, wind profile)

Final cross-section 
aerodynamic properties 
(shape, mean forces)

Compute numerically the 
structural response to 
fluctuating wind forces

Evaluating the buffeting motion
to derive wind loads
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3D Buffeting
Analysis

Equivalent 
static design  
wind loads
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Equivalent Static Wind Loads

Cases are developed to capture the envelope of peak displacements



Concluding  
Remarks
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• Wind effects on bridges are quite different from traditional
high-rise buildings

• Stability issues are a serious concern at completed and
construction stages; wind tunnel tests are required

• Mitigation measures for stability purposes requires wind
tunnel testing

• Static force and moment coefficients are also unknown for 
many cross sections

• Minimum studies are to be conducted for design

• Wind climate study, desktop stability assessment,
sectional model study, 3D buffeting analysis

Concluding Remarks
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THANK YOU

6
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QUESTIONS ?
M: +91-989597 6686,
Email: Suresh.Kumar@rwdi.com

mailto:Suresh.Kumar@rwdi.com
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