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Prof. Manohar Gadgil is retired professor from VITI.

He was HOD of the structural department of VITI.

He has completed his Bachelor of Engineering in Civil from the
University of Bombay in 1970 and M. Tech. in Structure from L.I.T.
Powai in 1975.

He has published several papers at Indian and international
conferences.

During the last 33 years, he has guided more than 100 P.G. students in
their dissertation work.

The software needed for the projects was developed by him in the
days when ready-to-use software was not available on the market.
He is providing consultancy services for high-rise buildings & various
industrial building structures.

Design of steel structures such as canopies, domes, pyramids,
skylights, glazing

Design of glazing works on various office/commercial buildings
Design of pre-stressed concrete floor grid systems & floor slabs
Design of special hinge and roller supports

Design of pre-engineered offices

Design of precast buildings

Development of several testing facilities for testing building materials
etc.

TANGENT Solutions Pvt. Ltd.

An Engineer is a person who applies the basic knowledge of science for the good of society.
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u' (1) = u(t) + u,(r)
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Equation of motion is given by

mil + cu + ku = —mii,(t)



Dividing above equation by m we get the following equation

U+ 28w, u +w§u = —Ugy(t)

It is clear that for a given u,(t), the deformation response u(r) of the system depends

only on the natural frequency @, or natural period 7, of the system and its damping ratio

In other words u=ult,T,7).

Thus any two systems having the same values of

T, and ¢ will have the same deformation response u(r) even though one system may be
more massive than the other or one may be stiffer than the other.



Typical Ground Motion Records

15 4 Uy, = 13.04 in./sec
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Time, sec
North—south component of horizontal ground acceleration recorded at the

Imperial Valley Irrigation District substation, El Centro, California, during the Imperial
Valley earthquake of May 18, 1940. The ground velocity and ground displacement were
computed by integrating the ground acceleration.



Earthquake response of linear system
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Ground motion recorded during several earthquakes



Earthquake response of linear system contd.
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Simple system under ground motion
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Equation of motion under the three forces is

mit + cit + ku = —mii,(t)



Response of SDOFto ground motion

For a given ground motion i, (¢), the deformation response u#(t) of an SDF system

depend; only ‘on the natural vibration period of the systém and its damping ratio.

Deformation u, in.
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Deformation response of SDF systems to El Centro ground motion.



Pseudo acceleration response

Pseudo acceleration = displacement x a)ﬁ == (2:;1/Tn)2
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Response spectrum
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El-centro ground motion
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D, in.

V, in./sec

Pseudo velocity and pseudo
acceleration spectra

Deformation Response Spectrum
Gives force F =k A
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Pseudo-velocity Response Spectrum
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Combined D-V-A Spectrum

Each of the deformation, pseudo-velocity and pseudo acceleration response
spectra for a given ground motion contain the same information

The three spectra are simply different ways of presenting the same information
on structural response

Displacement response spectra gives max displacement
Velocity response spectra gives max energy stored
Acceleration response spectra gives max equivalent static force/base shear

Three spectra are inter related as follows

A T, 2
'—:V:ﬂ}”D or ——A:‘f:——D
Wy 27 T,
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3 way response spectra

Three spectra quantities are related to each other as follows

A 1, 2
Dy 27 T"




V. in./sec

100 ¢

Combined D-V-A Spectrum

V. in./sec




Construction of Response spectrum

1. Numerically define the ground acceleration i, (f); typically, the ground motion
ordinates are defined every 0.02 sec.

2. Select the natural vibration period 7, and damping ratio ¢ of a SDF system.

3. Comp_ute the deformation response u(t) of this SDF system due to the ground
motion i, (¢) by any of the numerical methods

4. Determine u,, the peak value of u(r).

5. The spectral ordinates are D = u,, V = 2n/T,)D, and A = (2n/T,)*D.

6. Repeat steps 2 to 5 for a range of 7, and ¢ values covering all possible systems
of engineering interest.

7. Present the results of steps 2 to 6 graphically to produce three separate spectra
or a combined spectrum ‘ -
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Response spectra (& = 0.02) for El Centro ground motion: (a) deforma-

tion response spectrum; (b) pseudo-velocity response spectum; (¢) pseudo-acceleration
response spectrum.
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Normalized Response spectrum
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Response spectrum for El Centro ground motion plotted with normalized
scales Alitgs, Vige, and Diugs; & =0, 2, 5, and 10%.



Response of a very rigid system T =0.02

For this system, the structure is very rigid and hence the mass acceleration
Will be same as ground acceleration



Response of a very rigid system T =0.02
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(@) El Centro ground acceleration;,

(b) total acceleration response of an SDF system

with 7,, = 0.02 :c,ec and ¢ = 2%;

(c)  pseudo-acceleration response of the same system;
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Response of a very Flexible system T =30 sec
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deformation response of SDF system
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Response of a very flexible system T >15 sec

For this system, structure is very flexible, and hence the mass would
Remain stationary resulting into

u(t) > —ug(t)

u‘=0



Response of short period system
0.035 <T 0.5 sec

For short-period systems with 7,, between 7, = 0.035 sec and 7, = 0.50 sec

Acceleration of mass exceeds ground acceleration and
Magnification depends on Tn and damping

For 0.125 < Tn < 0.5 the mass acceleration is constant equal to
ground acceleration magnified by a factor depending ondamping

For 0.5 <Tn < 0.3 the mass velocity is constant equal to
ground velocity magnified by a factor depending damping

For 3 <Tn < 15 the mass Displacement is greater than ground
Displacement and magnification depends on Tn and damping

For 3 <Tn <10 the mass Displacement is constant equal to
ground Displacement magnified by a factor depending on damping



Spectrum is divided into three zones

Spectral Regions
Acceleration | Velocity i Displacement
sensitive " sensitive ' sensitive
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Solid line — response spectrum for El centro earthquake
Dashed line — idealized response spectrum for El centro earthquake



Elastic Design spectrum

Generally response spectrum of each
recorded earthquake ground motion

Is different

Elastic design spectrum Is used to design
new structures for future earthquake

The Design spectrum should be representative

of ground motion recorded at site during past
earthquake

If such record Is not available, the design
spectrum should be based onThe record



If such record is not available, the design
spectrum should be based on the record
available at other site under similar condition

The factors to be matched are

1. Magnitude of earthquake

2. Distance of site from source of earthquake
3. Fault mechanism

4. Geology of travel path

5.Local soil conditions



If such records in sufficient numbers are not
available then statistical approach is
necessary to consider available records
and do some averaging of results

ol :'. Response spectra of Imperial valley
' ! earthquakes, El centro California
o - AP 18 may 1940
TR 9 February 1956
8 April 1968

Al

Y axis is normalized mass acceleration
= mass acceleration/ground acceleration




Ground Acceleration (m/s®)

Typical Seismic ground motion
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Time history analysis using
ETABS and Response spectra

M. G.Gadqil
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Time history analysis for Imperial valley earthquake ground motion
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Normalized spectral acceleration
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Response spectra of different countries
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Spectral Acceleration Coefficient (S,/g)
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